Circuits Problems

Problem 1: Consider the sinusoidal voltage

$$v(t) = 80 \cos (1000\pi t - 30^{\circ}) V.$$

Find:

- a) The amplitude of the voltage?
- b) The frequency in hertz?
- c) The frequency in rad/s
- d) The phase angle in radians?
- e) The phase angle in degrees?
- f) The period in milliseconds?
- g) The first time after t = 0 that v = 80 V?
- h) The sinusoidal function is shifted 2/3 ms to the left along the time axis, What is the expression for v(t).

Problem 2:

- 1) Transform the following sinusoids to phasors:
 - a) $v = 170 \cos (377t 40^{\circ}) \text{ V}.$
 - b) $i = 10 \sin (1000t + 20^\circ)$ A.
 - c) $i = [5\cos(\omega t + 36.87^{\circ}) + 10\cos(\omega t 53.13^{\circ})] A.$
 - d) $v = [300 \cos(20,000\pi t + 45^\circ) 100 \sin(20,000\pi t + 30^\circ)] \text{ mV}.$
- 2) Find the time-domain expression corresponding to each phasors:
- a) $V = 18.6 / -54^{\circ} V$.
- b) $I = (20 / 45^{\circ} 50 / -30^{\circ}) \text{ mA}.$
- c) $\mathbf{V} = (20 + j80 30 / 15^{\circ}) \text{ V}.$

Problem 3: Find **Z** in the network, given that $V_o = 4 \angle 0^\circ V$

Problem 4: For the circuit in the Figure, calculate Z_T and V_{ab} .

Problem 5: Find the current I in the circuit given?

Problem 6: The ac bridge shown is known as a *Maxwell bridge* and is used for accurate measurement of inductance and resistance of a coil in terms of a standard capacitance Cs. Show that when the bridge is balanced, $Lx = R_2 R_3 Cs$ and $Rx = (R_2/R_1) R_3$, Find Lx and Rx for $R_1 = 40 \text{ k}\Omega$, $R_2 = 1.6 \text{ k}\Omega$, $R_3 = 4 \text{ k}\Omega$, and Cs = 0.45 mF

Problem 7: Calculate ix using Nodel analysis

Problem 8: Calculate the current I_0 using Mesh analysis

Circuits Problems Dr. Ayman Yousef **Problem 9:** Solve for $v_o(t)$ in the circuit using the superposition principle.

Problem 10: Find the Thevenin equivalent of the circuit as seen from: (a)terminals a-b (b) terminals c-d
