Circuits Problems

Problem 1: Consider the sinusoidal voltage

$$
v(t)=80 \cos \left(1000 \pi t-30^{\circ}\right) V
$$

Find:
a) The amplitude of the voltage?
b) The frequency in hertz?
c) The frequency in $\mathrm{rad} / \mathrm{s}$
d) The phase angle in radians?
e) The phase angle in degrees?
f) The period in milliseconds?
$\mathrm{g})$ The first time after $t=0$ that $v=80 \mathrm{~V}$?
h) The sinusoidal function is shifted $2 / 3 \mathrm{~ms}$ to the left along the time axis, What is the expression for $v(t)$.

Problem 2:

1) Transform the following sinusoids to phasors:
a) $v=170 \cos \left(377 t-40^{\circ}\right) \mathrm{V}$.
b) $i=10 \sin \left(1000 t+20^{\circ}\right) \mathrm{A}$.
c) $i=\left[5 \cos \left(\omega t+36.87^{\circ}\right)+10 \cos \left(\omega t-53.13^{\circ}\right)\right] \mathrm{A}$.
d) $v=\left[300 \cos \left(20,000 \pi t+45^{\circ}\right)-100 \sin \left(20,000 \pi t+30^{\circ}\right)\right] \mathrm{mV}$.
2) Find the time-domain expression corresponding to each phasors:
a) $\mathbf{V}=18.6 /-54^{\circ} \mathrm{V}$.
b) $\mathbf{I}=\left(20 \angle 45^{\circ}-50 \angle-30^{\circ}\right) \mathrm{mA}$.
c) $\mathbf{V}=\left(20+j 80-30 \angle 15^{\circ}\right) \mathrm{V}$.

Problem 3: Find \mathbf{Z} in the network, given that $\mathbf{V}_{o}=4 \angle 0^{\circ} \mathrm{V}$

Problem 4: For the circuit in the Figure, calculate $\mathbf{Z}_{\mathbf{T}}$ and $\mathbf{V}_{\mathbf{a b}}$.

Problem 5: Find the current I in the circuit given?

Problem 6: The ac bridge shown is known as a Maxwell bridge and is used for accurate measurement of inductance and resistance of a coil in terms of a standard capacitance $\boldsymbol{C s}$. Show that when the bridge is balanced, $\boldsymbol{L} \boldsymbol{x}=\boldsymbol{R}_{2} \boldsymbol{R}_{3} \boldsymbol{C}$ and $\mathrm{Rx}=\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right) \mathrm{R}_{3}$, Find $\boldsymbol{L} \boldsymbol{x}$ and $\boldsymbol{R} \boldsymbol{x}$ for $\boldsymbol{R}_{1}=$ $40 \mathrm{k} \Omega, \boldsymbol{R}_{2}=1.6 \mathrm{k} \Omega, \boldsymbol{R}_{3}=4 \mathrm{k} \Omega$, and $\boldsymbol{C s}=0.45 \mu \mathrm{~F}$

Problem 7: Calculate ix using Nodel analysis

Problem 8: Calculate the current I_{o} using Mesh analysis

Circuits Problems

Problem 9: Solve for $v_{o}(t)$ in the circuit using the superposition principle.

Problem 10: Find the Thevenin equivalent of the circuit as seen from:
(a)terminals $a-b$
(b) terminals $c-d$
